If the function  $f(x) =  - 4{e^{\left( {\frac{{1 - x}}{2}} \right)}} + 1 + x + \frac{{{x^2}}}{2} + \frac{{{x^3}}}{3}$ and $g(x)=f^{-1}(x) \,;$ then the value of $g'(-\frac{7}{6})$ equals

  • A

    $\frac{1}{5}$

  • B

    $- \frac{1}{5}$

  • C

    $\frac{6}{7}$

  • D

    $ -\frac{6}{7}$

Similar Questions

If $c = \frac {1}{2}$ and $f(x) = 2x -x^2$ , then interval of $x$ in which $LMVT$, is applicable, is 

Verify Rolle's Theorem for the function $f(x)=x^{2}+2 x-8, x \in[-4,2]$

Let $f: R \rightarrow R$ be a differentiable function such that $f(a)=0=f(b)$ and $f^{\prime}(a) f^{\prime}(b) > 0$ for some $a < b$. Then, the minimum number of roots of $f^{\prime}(x)=0$ in the interval $(a, b)$ is

  • [KVPY 2010]

Let $f(x)$ satisfy all the conditions of mean value theorem in  $[0, 2]. $ If $ f (0) = 0 $ and $|f'(x)|\, \le {1 \over 2}$ for all  $x$ in  $[0, 2]$ then

Examine if Rolle's Theorem is applicable to any of the following functions. Can you say some thing about the converse of Roller's Theorem from these examples?

$f(x)=[x]$ for $x \in[5,9]$